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Transient methods, such as those with pulse- or stepwise heating, have often 
been used to measure thermal diffusivities of various materials including layered 
materials. The objective of the present study is to derive an analytical solution 
of the temperature rise in a multilayered material, the front surface of which is 
subjected to pulse- or stepwise heating. The Laplace transformation has been 
used to obtain the analytical solution. This solution will enable us to establish 
the appropriate measurement method for thermophysical properties of the 
multilayered material. It is also shown that the present solution can be extended 
to functionally gradient materials (FGM), in which thermophysical properties 
as well as compositions change continuously. 

KEY WORDS: functionally gradient material; multilayered material; pulse- 
wise heating method; stepwise heating method; thermal diffusivity. 

1. I N T R O D U C T I O N  

Wide attention has been given to multilayered materials as electronic 
materials and materials resistant to wear, corrosion, and heat; they are 
anticipated to improve the specific nature of the conventional materials 
with homogeneity in composition, structure, and texture. The renovation 
to improve the homogeneity is expected to play an important role in 
technolgy because recent progress in technology requires advanced 
materials which will have the useful, multifunctional characteristics 
generated by heterogeniety in composition, structure, texture, etc. Among 
these advanced materials, functionally gradient materials (FGM), which 
are composed of different material components such as ceramics and 
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metals with continuous profiles in composition, structure, texture, 
mechanical strength, and thermophysical properties, have attracted special 
interest as advanced heat-shielding structural materials in future space 
applications. 

In order for the FGM to qualify as advanced heat-shielding structural 
materials, the thermophysical properties as well as the mechanical proper- 
ties are required to be evaluated properly. In addition, transient methods 
such as those with pulse- or stepwise heating are necessary for these evalua- 
tions because of their simplicity and usefulness at high temperatures. As a 
result, it becomes essential to use transient methods to evaluate the 
thermophysical properties of the multilayered materials, which become 
the FGM when the individual layer thickness is infinitesimal. However, 
application of the transient methods for the multilayered materials need 
great care because the thermal diffusivity obtained from the temperature 
response is apparent and different from that of averaged property related 
to the thermal resistance. Therefore, before making measurements by the 
transient methods, it is essential to investigate and confirm the measure- 
ment principles in the application of the transient methods to the multi- 
layered materials. 

The analytical solution of the temperature rise in the multilayered 
material, which is subjected to transient heating, is very limited. When the 
front surface is subjected to pulsewise heating, analytical solutions of the 
temperature rises are developed by Parker et al. [1] for a single-layered 
material and by Lee [2] for two- and three-layered materials. For the 
stepwise heating method, the analytical solution is developed by Araki and 
Natsui [3] for a three-layered material. However, no analytical solution 
for the multilayered material is reported. Therefore, it is required to 
develop the general analytical solution for arbitrary multilayered material 
in order to establish a measurement technique for the thermophysical 
properties and to evaluate the measured results. 

The objectives and contributions of the present study are the following. 
First, a general analytical solution of the temperature rise in the multi- 
layered material, which is subjected to the transient heating, is developed. 
This solution is easily extended to the temperature rise for the functionally 
gradient material (FGM) if the thickness of each layer is considered to be 
infinitesimal. It is shown that the temperature response for the FGM coin- 
cides with that for the single-layered material when one uses the Fourier 
number based on the apparent thermal diffusivity and the thickness of the 
sample material. The relation between the apparent thermal diffusivity 
obtained from the temperature response and the mean thermal diffusivity 
related to the thermal resistance is also given. Second, numerical calcula- 
tions are performed in order to clarify the difference between the tem- 
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perature rise due to the number of layers in the sample material when the 
thermophysical properties of the first and final layers are given. Also, the 
temperature response inside the multilayered material is calculated. 

2. FORMULATION 

2.1. Assumptions, Governing Equation, and Boundary Conditions 

A multilayered material, the front surface of which is subjected to a 
pulsewise or stepwise radiation heat input, is considered and the sub- 
sequent temperature transient is investigated, by solving the heat diffusion 
equation with the appropriate boundary conditions. The following assump- 
tions are made: 

(1) one-dimensional heat flow, 

(2) no heat loss from the sample surface, 

(3) no thermal contact resistance between layers, 

(4) heat input uniformly absorbed on the front surface, 

(5) homogeneous layers, and 

(6) constant thermophysical properties of each layer. 

The schematic diagram of the geometry of the multilayered material is 
shown in Fig. 1. 

The heat diffusion equation for each layer is mathematically described 
as 

~Oi(z, t) O20~(z, t) 
~t =a~ ~?z2 (i= 1,2 ..... n) (1) 

The boundary conditions are 

~OI(Z1, t) 
- , h  - -  - w ( t )  

Oz 

0 , _ l ( Z .  t ) = O i ( z i ,  t) 

8Oi_ l(zi, t) OOi(Zi, t) 
~z - 2~ ~z 

~0n(0, t) 
2 ~ - - = 0  

Oz 

(2) 

( i = 2  ..... n) (3) 

(i = 2 ..... n) (4) 

(5) 

and the initial condition is 

Oi(z, O) = 0 ( i= 1, 2 ..... n) (6) 
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Fig. 1. Schematic diagram of the multilayered material. 

where 

li = zi+ 1 - z i  (7) 

and a is the thermal diffusivity, 2 the thermal conductivity (= pca), p the 
density, c the specific heat capacity, l the thickness, 0 the temperature, z the 
distance from the rear surface, and t the time. 

2.2. Solution by the Laplace Transformation 

If we apply the Laplace transformation, we have the following solution 
from the subsidary equation: 

O i ( z , s ) = A i s i n h { ~ - - ~ S z ' ~  {~--~--Sz~ (i 1,2 ..... n) (8) t,,/&. ) + " '  cosh t,,/&, ) = 

The constants Ai and B i are  determined with the following boundary 
conditions, treated in the same way: 

dOl(z t ,  s) 
21 dz - W(s)  (9) 
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2i 1 

Oi_,(zi, s)=Oi(zi, s ) (i=2 ..... n) 

dOi l(zi, s) dOi(zi, s) 2i (i = 2 ..... n) dz dz 

dO.(O, s) - 2 , - -  0 dz 

(lO) 

11) 

12) 

Then we have 

-Alx/7{AlC~ 1 

A, ~ s i n h ( ~ z ~ ) + B i  ~ c o s h ( ~ z / )  

"/; ,/7 z,) =A~sinh(-~a Zi)+Bic~ 

"~ ~,  osh sinh ) 

=A~/~-l{A~c~ - -  zi )} 

A.=O 

with 

13) 

(14) 

(15) 

(16) 

Ai=2i/x/~ , A#.~_I=Ai/Ai l (17) 

Here A~ is called the heat-penetration coefficient, which depends only on 
the thermophysical properties and is independent of the thickness of the 
layer. If we put 

/cosh ( =  zi~ sinh ( - -  z, 

b , = ( ~ 4 ,  < ,--1 ,/; ,/; ' 

sinh (-----~ zr \ / ,/; 
/ "'J< / 

Di = Ai/i 1 I (18) 
! 

A~ 1/~cosh - - z i  / ~Ai 1 / i s i n h ( ~ z i )  
\~/ ai / 
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Equations (13) to (16) can be expressed as follows: 

-~W(s)]=(c~ ~-sl sinh ( x / ~  zl) ' ]  b l \ ~ - ~ l  JJ (19) 

C i lbi l = D i b i  (20) 

b . = B .  (01) (21) 

Then from Eq. (20) we have 

bl = C~-~D2C~- ~D3 - �9 - C~ ~IDiCZ1Di+ 1 �9 �9 �9 C~-_~2D ~ 1C.)ID~b~ (22) 

If we define that 

f c o s h ( , 5  r/.rh/.) - s inh(x /~  qn~ll/n)~ (23) 
E~ = ~. - s i n h ( ` 5  r/. ~h/.) c o s h ( , 5  q , r / , / , ) )  

E i = D i C i  1 

c o s h ( , 5  t/.qi/n ) -- sinh(x/~ ~/n qe.) "~ 
: Ai/i-1 -Ai  i/isinh(,5 qnqi/n) Ai 1/icosh(,,fs q.qi/n)) 

(24) 

E, =D ,  =A./,,_a ( c o s h ( ~  qn) - s inh(x /~  qn ) 
- A._ ~/. sinh(.~f~ ~/.) A._~/.cosh(.~/-~.)J (25) 

with 

?l i = l J x/-~i , 

Equation (22) becomes 

where 

r/i m = r/It/, (i = 1,..., n) (26) 

b~ = B.C~-1Ei-lx (27) 

C l l E 1 1  = 

x = E1E2 "" El_ 1E/ ' "  En_ 1En (~ )  

,5 / cosh( ~Zl/ ,5  
I \x/a' / \x/a' / ]  

,5 ,5 -sinh - - z  1 cosh (---~ z1) ] 

(28) 

(29) 
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Here qi is called the thermal diffusion time. Substituting Eq. (27) into 
Eq. (t9), we obtain 

w(s_) 
BnA1 x/-.~j = U(s) ( 3 0 )  

where 

U(s)=(1  0) EIE2.--E~_~E~.. .E~ i E n ( ? ]  (31) 
\ W  

Then the temperature response at the rear surface can be expressed as 

On(O,s)=B = _ [ W(s)_ ] 
A1 x f s  U(s)A 

(32) 

2.3. D e t e r m i n a t i o n  o f  the Character i s t i c  Equat ion  U(s) 

In order to obtain the temperature response, we have to determine 
U(s) of Eq. (31). Although U(s) is known for up to three-layered material, 
it is not reported for multilayered material. In order to obtain U(s) for the 
general case, let us first confirm U(s) for up to n = 3. For the single-layered 
material (n = 1), U(s) is obtained as follows from Eq. (23): 

U(s) = - s i n h ( ~  v/l) (33) 

When n = 2 for a two-layered material, U(s) is obtained as follows: 

g ( s ) = - ( @ ) { ( A 1 / 2 + l ) s i n h [ x ~ r l 2 ( q l / 2 + l ) ]  

+ (All2-- 1) s i n h [ x ~  ~/2(~tl/2 - 1)] } (34) 

because of 

with 

~ , (2 ) \  [A2/x'~{E] 2) ~12 ] (35) 
E x E 2 : ( - - 2 - - ) k E ~ ]  ) -22p(2'1/ 

E(2) 1)cosh{xfsq2(ql/2+ 1)} 11 = (A1/2 Jr- 

- (A1/2 - 1)cosh {x/~ v/2(vh/2 - 1)} 

E ~  ) = -(A1/2 + 1) s inh{x~  ~/2(v/,/2 + 1)} 

- (A m - 1 ) s inh  { x / ~  v/2(q 1/2 - 1 ) } 

E(2) sinh{x F 21 = - -  (A  1/2 -~- 1 ) ?] 2(/'] 1/2 -[- 1 ) } 

+ (A,/2-- 1) s inh{x~  q2(q,/2- 1)} 

(36) 

(37) 

(38) 
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E(2)= (A1/2 _{_ 1) cosh{xfs  02(01/2 "~ 1)} 22 

+ (A 1/2 - 1) cosh {x /s  ,2(01/2 - 1)} (39) 

When n = 3 for a three-layered material. U ( s )  is obtained as follows: 

{A3/l~ 
U ( s )  = - \ 22 } [ (A1 /2  + 1)(A2/3 + 1) sinh{~.f7,3(0~/3 + 02/3 + 1)) 

+ ( A m  + 1)(A2/3 - 1) s inh{x/s  03(,1/3 + 02/3- 1)} 

+ (A 1/2 - 1)(A2/3 - 1) sinh{x ~ 03(01/3 - ,2/3 + 1)} 

+ (A1/2 -- 1)(A2/3 + 1)s inh{x/7 ,3(01/  3 - - 0 2 / 3 -  l )} ]  

because of 

[/A3/l~{E]3) p ( 3 ) \  = ~12 
E 1 E 2 E 3  ~ 22 }~E(23) L-,(3)] 

L~22 / 

E(3)_ 1) cosh{x / s  + 1)} u - ( A m  + 1)(A2/3 -t- 03(01/3 "{- "2/3 

- -  (A1/2 + 1)(A2/3 - 1) cosh {x/7 03(,1/3 + 02/3 --  1)} 

-'}- ( A 1 / 2 -  1)(A2/3- 1)cosh {x/7 0 3 ( 0 1 / 3 -  02/3 "~ 1)} 

- (A 1/2- 1)(A2/3 + 1 )cosh{x /7  ?]3(01/3- "2/3- 1)} 

E(3)  _ ( A m  + 1)(A2/3 + 1) s inh{x/7 03(01/3 + 02/3 + 1)} 12 

- (A 1/2 + 1)(A2/3 - 1) s inh{x/s  03(01/3 + 02/3 - 1)} 

(40) 

with 

(41) 

(42) 

- -  (A1/2 - -  1)(A2/3 - 1) s inh{x/s  03(01/3 --  02/3 -[- 1)} 

- -  (A1/2 - -  1)(A2/3 + 1) sinh {x/7 03(01/3 --02/3 -- 1)} (43) 

E(3) 21 = - - ( A  1/2 -[- 1)(A2/3 + 1) sinh {x/7 03("  1/3 "1- 02/3 -[- 1)} 

+ (A J/2 + 1 )(A 2/3 - 1 ) sinh { . f s  03(, 1/3 + ,2/3 - 1 )} 

- (Aa/2 - 1)(A2/3 - 1) sinh {x/7 03(01/3 - ,2/3 + 1)} 

+ (Aa/2 - 1)(A2/3 + 1) sinh{x//7 03(01/3 - 02/3 - 1)} (44) 

E(3) 22 = (A1/2 + 1)(A2/3  + 1) c o s h { x ~  03(0 i/3 + 02/3 + l)} 

+ ( A u 2  -[- 1)(A2/3 - 1) cosh {x/7 03("1/3 -]- 02/3 -- 1)} 

+ ( A , / 2  - -  1 )(A2/3 -- 1 ) cosh { x ~  03(" 1/3 -- "2/3 + 1 )} 

-'}- (A1/2 --  1)(A2/3 + 1) c o s h { x / ~  03(01/3 - " 2 / 3 -  l ) }  (45) 
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For arbitrary n larger than 3, we can express U(s) as follows: 

__(An~1 ~ 2~-~ 
U(s)=  \2n--1/] E )~jsinh(xfst/~c~ (46t 

j = l  

because of 

( An~1 ~(E~I) E~2'~ (47) 
E 1 E 2 " - ' E n  1En = ~ - - ~ j ~ E ( 2 q  ) E2(~)/ 

with 

2 n 1 

E~])= ~ c~j, nZjcosh(x/~t/ncoj) (48) 
j = l  

2n- 1 

E ~  )=  - 2 )~J sinh(xfs ~/~c~ (49) 
j = l  
2 n 1 

E~ )= - Z c~s,.XJ sinh(xf~ t/.c~ (50) 
j = l  

2 n- 1 

Zjcosh(,f  .oj) (511 
j = l  

as shown in the Appendix. Here 

n - - I  

Zs = ]-~ (Am/m+l +~S,m~j,m+l) (52) 
m = l  

(J)j= ~ O~j,m~]m/n (53) 
m = l  

In Eqs. (48) to (53), all combinations of ~j,m = +1 are to be considered 
for rn~>2 while c9,1 = 1. It should be noted that the number o f j  which we 
must take into account depends on the number n of layers; j =  2 "-' .  The 
temperature response at the rear surface can be expressed as 

( 2  n 1 ~ I  W(S)  )1 (54 )  

0.(0, s)= B. = \--~ }L i ~ 2~,' Z; s i n ( - - / ~  r/.~ s 
j=1 

Here use has been made of the relation that 

sinh z = i s i n ( -  iz), i = ~  (55) 

840/13/3-10 
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2.4. Inversion fur the Laplace Transformation 

The inversion of On(0, s) is not available in tables of the inverse 
Laplace transformation. Then the complex contour integration is required 
to obtain the inverse Laplace transformation: 

- e , t u ,  s )  d s  (56) 0n(o, i 

Here the poles for the transformation are the roots of the following charac- 
teristic equation including 7 = 0: 

2 n 1 

U(7) = ~ Zi sin(7%) = 0 (57) 
] =  1 

where 

7 = --i .~fs r/n (58) 

It should be noted that the characteristic equation is independent of the 
heating method for the front surface of the sample material. 

Introducing Cauchy's residue theorem for the integration, we obtain 

1 I ;+i~P(S)  estds (59) 
0.(0, t )=  Rk=~i~i ~ q(s) 

k = 0  

where Rk is a residue at a nonnegative kth pole. According to Heaviside's 
expansion theorem, residue at the pole of the first order is given by 

Rk = p(sk) e~t for sk > 0 (60) 
q'(Sk) 

Here a prime indicates d/ds. 

3. TEMPERATURE RISE AT THE REAR SURFACE 

3.1. Temperature Rise by Pulsewise Heating 

When the front surface of the multilayered material is subjected to t he  
pulsewise heating, W(s) in Eq. (9) is expressed as 

fo W(s) = Q~(O) e s, dt = Q (61) 

where Q is the heat input per unit area and ~(t) the delta function. 
Functions ofp(s) and q(s) in Eq. (59) are expressed as 

?(s) = k A , q , / Q  (62) 
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and 

which yields 

2 n 1 

q(s)=- t1227 ~ zjsin(?coj) (63) 
j = l  

q'(sk)= y, (Oj){jCOS(TkO)j) for 7k r  (64) 
j = l  

Here 7k is the positive root of the characteristic equation of Eq. (57). Then 
from Eq. (60) the residue Rk is obtained as 

E e kJn2t l R~= \ ~ /  2 2 n 1 

ojzj cos(7~coj) 
j = l  

(65) 

For 7o = 0, that is, So = 0, we have the residue as 

R~ =~ AnOn f 2 ~  1 (.Oj)~j 

I__j=l 
Then Eq. (59) becomes 

(66) 

On(O' t)=(Rn-lQ~ [2~ An~n f 1 
%Zj 

I_J= 

e (~k/"")2' 1 - - + 2  ~ a . - ~ - - - -  (67) 

~' s=, ~ c~176176 

If we further normalize the temperature by the maximum temperature rise 
at the rear surface, Eq. (67) becomes 

2n-I 

V = 1 + 2  ~ \ j=~ l  ('Oj)~J) e-(Tk/rln)2t 
k = l  2n-I (68) 

Z ~o;zi cos(Tk%) 
j = l  

It should be noted that the temperature rise expressed by Eq. (68) 
includes that for the single-layered material ( co l=Zx=l )  obtained by 
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Parker et al. [1] and those for two- and three-layered materials obtained 
by Lee [2] as special cases. 

3.2. Temperature Rise by Stepwise Heating 

When the front surface of the multilayered material is subjected to 
stepwise heating, W(s) in Eq. (9) is expressed as 

f o  Q 
W(s)= Qe -st d t = - -  (69) 

S 

where Q is the heat input per unit area. Functions of p(s) and q(s) in 
Eq. (59) are expressed as 

(2- 1] 
p(s) --= \Antln J Q (70) 

and 

which yields 

2 n- 1 

q ( s ) = q n  4'y3 2 zjsin(Te)j) 
j = l  

(71) 

q,(sk) = k ~ cojXjcos(Tko)j) for 7k#0  (72) 
j = l  

Here 7k is the positive root of the characteristic equation of Eq. (57). Then 
from Eq. (60) the residue Rk is obtained as 

(2- 1Q.:) I Rk=\ A-2-~-2. / 

q 
e - (~k/q")2 r | 

- 2  2.~ 1 (73) 
y2 

j = l  

For 7o = 0, that is, So = 0, we have the residue as 

: 1 \ A,t/, / 2~1 c~ 

L_j=l 

6A,t/, / El 
2 n- 1 

2 ~;zj 
j = l  

X 2~1 ) 2  ' 

\ j = l  

(74) 
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because this pole is second order. Then Eq. (59) becomes 

(A"r/") y~1 COYZY ] ~6jS=lcoJZY / 

(,_,) 1 ~= O')jZJ e - ('/k/~n)2 t 

\ j  1 
- 2  (75) 

k = l  2 2n 1 

~k ~ cojzjcos(ykcoj) 
j = l  

From Eq. (75) we can obtain the temperature rise at the rear surface for 
three-layered material obtained by Araki and Natsui [3]  as a special case. 

3.3. Temperature Rise of the Functionally Gradient Material 

Since we have obtained the temperature rise at the rear surface of the 
multilayered material as Eq. (68) for pulsewise heating and Eq. (75) for 
stepwise heating, let us apply them for the F G M  in which thermophysical 
properties gradually change. If we consider the situation of n ~ o% we can 
anticipate A i/i+l~ 1. This relation yields 

ZI= f l  (Am/m+l+l)~)~ j ( j > l )  (76) 
m - - 1  

which means that all we must consider in the characteristic equation and 
the temperature rise is the first term for j ,  for co's, it is enough to evaluate 
only co 1, which is expressed as 

fo dz 
c o l F ] ~  = m = l  ~ t l m = J  LaN/~ ~S  (77) 

where a(z) is the profile function of the thermal diffusivity and L the thick- 
ness of the FGM. Since the characteristic equation of 

sin(Tk co ~) = 0 (78) 

gives us the kth positive root as 

7kcol = klr (k = 1, 2 , . . .  ) (79) 
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the normalized temperature rise of Eq. (68) for the pulsewise heating is 
simply expressed as 

V= 1 + 2  ~. e-{(k~)/s12t (80) 
k= 1 cos(kr0 

It should be noted that the normalized temperature rise at the rear surface 
of the F G M  coincides with that of the single-layered material. 

For the stepwise heating, from Eq. (75), the ratio of the temperature 
rise defined as V = 0 (0, 2t)/O (0, t) is expressed as 

2t 1 2 ~ e-2E(kzr)/S]2'~ 
~5 6 k=J (k~) 2 eos(kzr)J 

v =  (81) 

k=l 

The characteristic equation is the same as Eq. (78). 

3.4. Relation Between Apparent and Mean Thermal Diffusivities 

Since we have successfully derived the normalized temperature rise of 
the FGM, let us investigate the relation between the thermal diffusivity 
obtained from temperature response and that related to the thermal 
resistance, taking pulsewise heating method as an example. In this 
investigation we should note that the thermal diffusivity obtained from 
temperature response regarding the FGM as a homogeneous material is 
apparent and that it is different from the mean thermal diffusivity which 
has physical meaning related to the thermal resistance. Although these 
points have already been pointed out by Araki et al. [-4] for the two- 
layered material, we should also note that the temperature response has 
some information inside the sample material. 

If we apply the conventional pulsewise heating method for Eq. (80), 
we formally obtain the apparent thermal diffusivity expressed as 

2 / 
ae= dz 

(82) 
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whereas the mean thermal diffusivity obtained from the thermal resistance 
is 

1 ( 1 i )  1" (83) am = Cm p ~  o dz 

�9 ] L  a(z) p(z) c(z 

where a(z) is the profile function of the thermal diffusivity inside the FGM 
and the mean values of the density and the specific heat capacity are, 
respectively, 

Pm=--{ L p(z) dz, cm = p~L L p(z) c(z) dz (84) 

Therefore, we can say that the relation between the apparent and the mean 
thermal diffusivities is obtained from Eqs. (82) and (83) when the profile 
functions of the thermophysical properties are given. With this relation, the 
thermal conductivity, which is one of the important parameter for evalua- 
tion of the heat-shielding property, can be obtained with the pulsewise 
heating method. 

4. T E M P E R A T U R E  RISE I N S I D E  THE MATERIAL 

Next let us consider the temperature response inside the material. At 
a certain position z which locates in the ith layer, the temperature is 
expressed by the subsidary equation of Eq. (8). If we express it with the 
matrices defined in Section 2.2, we obtain 

where 

and 

O,(z,s)=Bn(1 0) E*Ei+, �9 �9 �9 En_ 1E,~ (01) 

( cosh(x/s r/.t/~) -sinh(,~ss t/nt/~,)' ] 
E* \ -- sinh(x/~ r/, t/~,) cosh(x/s t/, r/~,) ,/ 

(85) 

(86) 

= ( z , +  l -  i*/H = (87) 

If we follow the procedure mentioned in the Appendix, it is shown that 

(A , / i ) (E , (~  ,+11 E~2(n-i+l)~ 
E*Ei+I . - .E ._ IE  . =\2" ~J\E~, ( ' - ' *~ )  E#,_ ,+ , ) j  [88) 
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where 

2 n i 

E ~ l ( n  i+1)= 2 ~*j,.-i+ l~j"* cosh(x/s q~o*) (89) 
j = i  

2 n -  i 

E. ( .  ,+1)= _ • Z* sinh(x/sr/nco*) (90) 
j = i  

2n- i  

E*("- '+  1) = - E ~J,~ - ,  + 1Z* s inh(x~ ~/~ ~*) (91) 
j = i  

2 n i 
E*2 ("-i+1)= • Z* cosh(x~q,a~*) (92) 

j = i  

and 

n--I 
Z * =  I-/ (Am/m+l+C~*m~*, v,m+l) (93) 

m = i  

~o* = ~/~. + ~ * O~j, m q m / n  (94) m=i+1 
In Eqs. (89) to (94), all combinations of c~* = + 1 are to be considered for J,m 

m>~i+l ,  while e*.=l.j,, Using Eq.(54), Eq.(85) can be expressed as 
follows: 

I 2 n i 1 w(,) y 
(2 , -1)  j=, 

Oi(z, s) = \ Ai J 2, , (95) 

i x f s  E zjs in(- ixfs~/ .coj)  j=l 

Through the inversion for 
Eq. (95) yields the temperature rise for the pulsewise heating as 

the Laplace transformation (cf. Section 2.4), 

V (96) 
(2n i i 

Oi(z, t) = \ Ai~, / 2 
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where l[-< ) ] 
v=i+2 ~ {':' o7) 

j=i 
is the normalized temperature by the maximum temperature rise at the rear 
surface. 

For stepwise heating, Eq. (95) yields the temperature rise as follows: 

\ ~, , /~"~-- /  ~)-/-7-;--/  
kj~l (J)J'J/ k 6 j~=l (1)j)~j) 

If" . . . . . . . . .  . 

k = 1 2 n - i 2 n 1 

(98) 

As for the FGM, the temperature rise for pulsewise heating is 
expressed as 

~ cos[krcS(z)/Sl e- [(k,~)lS]2, 
V= 1 + 2 cos(k~) 

k = l  

(99) 

where 

dz 
S ( z )  = , s ( - L )  - S (100) 

For stepwise heating, it is expressed as 

~5 6 2 (krc)2cos(krt) e 
V= k=l (101) 

t 1 cos[krcS(z)/S] e_{(~vs]2,} 
{~-~- -~-2  ~ (k~)2cos(k~) 

k = l  
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5. RESULTS 

Numerial calculations have been performed in order to investigate the 
effects of the parameters on the temperature response. In the following, we 
restrict ourselves to the pulsewise heating method because nearly the same 
results are anticipated to be obtained for the stepwise heating method. Let 
us first study the temperature rise at the rear surface of the material, the 
front surface of which is subjected to the pulsewise heating. In the calcula- 
tions, Eq. (68) is used for the multilayered material and Eq. (80) for FGM; 
the key parameters are the ratio of the heat-penetration coefficients, Ai/,,, 
and the ratio of the thermal diffusion times, t/i/,. For simplicity, the 
following profiles of the thermophysical properties inside the multilayered 
material are assumed for the heat-penetration coefficient and the thermal 
diffusion time, respectively, as 

n - i  
Ai/n= 1 + ~ 1  (AI /n -  1) (102) 

n - i  
tli/, = 1 + n -  1 (i l l~'-  1) (103) 

with A1/n=lO and ~/1/n=0.25. These profiles become linear when the 
material is the FGM; therein the number n of layers inside the material is 
infinity. 

Figure 2 shows the temperature rise at the rear surface of the material 
as a function of the Fourier number, with the number n of the layers taken 
as a parameter. The Fourier number in the abscissa is based on the 
apparent thermal diffusivity defined as 

Fo~ = ~2 t (104) 

where a e is the apparent thermal diffusivity obtained from the conventional 
application of the pulsewise heating method considering the sample 
material to be homogeneous. The use of this Fourier number enables us to 
normalize the time duration until which the temperature rise reaches half 
of the maximum temperature rise; for the FGM, that is, n ~ 0% the tem- 
perature response vs this Fourier number coincides with that for the single- 
layered material, as pointed out in Section 3.3. We see from Fig. 2 that 
the temperature rise depends on the number of layers inside the material. 
Here it should be noted that the apparent thermal diffusivity is not the 
thermophysical property as shown in Section 3.4. 

Figure 2 also suggests that 11 layers are not enough to take the multi- 
layered material as the FGM, as far as the temperature response is 
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Fig. 2, Normalized temperature rise as a function of the Fourier 
number  based on the apparent thermal diffusivity and thickness of 
the sample material, with the number  of layers inside the material 
taken as a parameter; the ratio of the heat-penetration coefficients is 
All. = 10; the ratio of the thermal diffusion times is I / 1 / .  = 0.25. 
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Fig. 3. Normalized temperature rise inside the eight-layered 
material as a function of the Fourier number  based on the apparent 
thermal diffusivity and thickness of the sample material; the ratio of 
the heat-penetration coefficients is Aa/8 = 10; the ratio of the thermal 
diffusion times is ql/8 =0.25. 
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concerned. However, since the temperature rise has some information 
inside the sample material, the differences between temperature rises infer 
some possibilities to estimate the profile functions for the thermophysical 
properties; further studies are required. 

Figure 3 shows the temperature rise inside the eight-layered material 
as a function of the Fourier number defined by Eq. (104). The profiles of 
the thermophysical properties inside the material are the same as those 
expressed by Eqs. (102) and (103), with Al l  8 = 10 and rh/8 = 0.25. Although 
the temperature response of the FGM for the same condition is exactly the 
same as that for the single-layered material, the number of layers inside the 
sample material also influences the inside temperature response. This result 
also infers some possibilities to estimate the profile functions of the 
thermophysical properties from the deviation of the temperature rises. 
Again, further studies are required. 

6. CONCLUDING REMARKS 

In the present study, we have tried to derive the analytical solution 
of the temperature rise in the multilayered material which is subjected to 
transient heating, such as pulse- or stepwise heating. The general analytical 
solution for arbitrary multilayered material has successfully been obtained 
by solving the conventional heat diffusion equation with the appropriate 
initial and boundary conditions, with the use of the Laplace transforma- 
tion. Since the present analytical solution includes that for up to three- 
layered material, it is expected to have general utility in the study of 
temperature response from which thermophysical properties are to be 
estimated. Furthermore, by considering the thickness of each layer to be 
infinitesimal, the present solution can be easily extended to that for the 
functionally gradient materials (FGM). Such materials are anticipated to 
improve the specific nature of the conventional materials and are intended 
to be used as electronic materials and/or materials resistant to wear, corro- 
sion, and heat. 

The present calculations emphasize that the temperature response 
varies depending on the number of layers in the sample material because 
of the change of the heat capacities in the sample material. Then as far as 
the temperature response is concerned, the present results suggest that 
great care must be taken when we take the multilayered material as the 
FGM; similarly, the F G M  cannot simply be taken as the multilayered 
material. It has also been shown that the temperature response for the 
FGM coincides with that for the single-layered material if we use the 
Fourier number based on the apparent thermal diffusivity and the thick- 
ness of the sample material. This means that we can use the knowledge for 
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the single-layered mater ia l  in the l i terature when we evaluate  the specific 
na ture  of the F G M  from the thermophys ica l  point  of view. It  should also 
be no ted  that  the thermal  diffusivity obta ined  f rom tempera tu re  response 
by taking the F G M  as a homogeneous  mater ia l  is apparen t  and that  it is 
different f rom the mean  thermal  diffusivity, which has physical  meaning  
related to the thermal  resistance. 

Since we can obta in  the t empera tu re  response of the arbi t rary  multi-  
layered material ,  it m a y  be the next subject to obta in  or  est imate the profile 
functions for the thermophys ica l  properties,  because the t empera ture  
response has some informat ion  inside the sample material .  Fur ther  studies 
are then ant icipated for the p roper  evaluat ion of the specific nature  of the 
mult i layered materials  and /or  the F G M .  

A P P E N D I X  

We prove  here the general relation of Eq. (46) by mathemat ica l  induc- 
tion. When  n = 2, f rom Eqs. (52) and (53) we obtain  

XI = A1/2 + 1, co 1 = Y]l/2 q- 1 (A1) 

)~2 = A 1 / 2 - -  l ,  (D2 ~--- t]l/2 - -  1 (A2) 

with which we can derive Eq. (34) f rom Eq. (46). When  n = 3, we obtain  

)~1 = (A1/2 + 1) (A2/3  + 1), 

Z2 = (A 1/2 -1- 1 )(A2/3 - 1 ), 

Z3 = (A1/2- 1)(A2/3-  1), 

)~4 ~--- (A1/2 -  1)(A2/3 + 1), 

(2) 1 = /71/3 -}- ?]2/3 2r- 1 (A3) 

(D2 =/'11/3 -[- Y]2/3 -- 1 (A4) 

0,)3 ~- 711/3 - ~2/3 -]- 1 (A5) 

c~ = t/1/3 - q2/3 - 1 (A6) 

with which we can derive Eq. (40) f rom Eq. (46). 
Next  let us obta in  the relat ion for n = k + 1, assuming that  the relat ion 

for n = k is true. Equa t ion  (47) for n = k + 1 can be expressed as 

( Ak/1 ~ (E~ '  ink ' \  
= ~12 ~ Ak + EIE2- . -EkG+,   22 'k /J l/k 

cosh(.,/;,Tk+ 1) 
x --Ak/k+l sinh(x/-s t/h+1) 

- sinh(x/-s t/k + 1 ) 

Ak/k+1 c o s h ( x f s  r/k+ 1)) 

(A7) 
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where 
2 k-  1 

E(K) ~ ~j, kZj cosh(x/s tlkC0j), 11 ---- 
j = l  

2 k -  l 

E(k) ~ c~zkZj sinh(x/s I/~o]), 21 ~ - -  
j = l  

2 k 1 

E ( k )  __ __ 2 Z j  sinh(.,/s tlkcoj) 12 - 
j = l  

2 k 1 

E(k)_ ~ Zj cosh(x/s qk~0j) 22 - -  
j = l  

(A8) 

Then, Eq. (A7) becomes 

/ A  \ / ~ 7 (  k + l  ) 
~--- ~ l X k +  1 / 1 ~ / * " 1 1  EIE2""EkEk+I ~ ] ~ E ( k  + 1) 

E(k + 1)) 
12 (A9) 

i ~ ( k +  1) 
~ 2 2  

where 
2 k 1 

E(k + ~) l l  = Z [zj(Ag/g+l+~ C~176 
j = l  

--  z j ( A k / k + l - - O ~ j , k )  c o s h { ~ - S O l k ( O j - - q k + l ) }  ] ( A 1 0 )  

2 k 1 

E ( k +  1) 
12 = -  Z [zj(Ak/k+l +C~j,k) S i n h { ~  (~IkOOj-l-*lk+,)} 

j = l  

+ zj(Ak/k+,--C~j,k) sinh{x//~ (qkCOj--qk+,)}]  (All) 
2 k l 

E ( k + l ) _  
21 - - -  ~ [ z j ( A k / k + l + O ~ j , k )  s i n h { x / S ( t l k C O j + t l k + , ) }  

j - 1  

- - x j ( A k / k + l - - O ~ j , k )  sinh {x/s (qkO)j--qk+,)}] (A12) 
2 k- 1 

E ( k +  1 ) _  22 - Z [zJ(Ak/~+t+aj, k) COsh{x//7(qkOj+tl~+,)} 
j = l  

+ z j (Ak /k+ , - -~ j ,k )cosh{x /7  (tlkCOj--rlk+,)}] (A.13) 

If we define 

(Ak/k + 1 -}- O~j,k) = (Akin+ 1 + ej, kCg, k + 1) (A14) 

(~kO)j-[- t]k + 1) = (l~kfDj -{- O~j,k + l ~ k +  1) (A15) 

with O~j, kq_ 1 = +1, and redefine Zj and coj as 
k 

zj= [I 
m = l  

(Am/m+ l -t-O~j,m~j,m+ l)  , OOj= 
k + l  

2 
m = l  

O~j,m~m/k + 1 (A16) 
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Equations (A10) to (A13) can be expressed as 

2 k 

E]~ +1):  E O:Lk+lZjcosh("~Trlk+lO)j)' 
j = l  

2 k 

E ( k  + 2) _ ,2 - - E z+sinh(x/7~/e+,C~ 
j = l  (A17) 

2 k 

E ( k  + 1) 22 = - E aJ, k+,z, sinh(~,/sqk+la~,) , 
j = l  

2 k 

E(k+,) E Zjc~176 22 = 

j = l  

It should be noted that the number ofj  which we must take account of in 
the summation is 

j = 2 x 2  k i = 2(k+l)-' (A18) 

Equation (A17) for n = k +  1 coincides with Eq. (A8) for dependence on 
the number n. Therefore, the relation expressed in Eq. (47) is proven to be 
true by mathematical induction. 
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NOMENCLATURE 

A Constant l Thickness of the layer 
a Thermal diffusivity n Number of layers in the 
B Constant sample material 
b Vector defined in Eq. (18) p Numerator of the image 
C Matrix defined in Eq. (18) function for the temperature 
c Specific heat capacity response 
D Matrix defined in Eq. (18) Q Heat input per unit area 
E Element of matrix E q Denominator of the image 
E Matrix [ = D C  2] function for the temperature 
Fo Fourier number [ = a t / L  2] response 
L Thickness of the sample R Residue 

material S Function defined in Eq. (100) 
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s Parameter  in the Laplace 
transformation 

t Time 
U Laplace transform of the 

characteristic equation 
V Temperature ratio 
W Heat  input function 
x Vector defined in Eq. (31) 
z Distance 

Greek Symbols 

+1  
7 Positive root of the charac- 

teristic equation 
Delta function 

~/ Thermal diffusion time 
E=l/ l 

O Laplace transform of the non- 
dimensional temperature 

0 Nondimensional temperature 

A Heat-penetration coefficient 

2 Thermal conductivity 
p Density 
Z Parameter  defined in Eq. (52) 
~o Parameter  defined in Eq. (53) 

Subscripts 

e Apparent 
i Value of the ith layer 
i/j  (Quantity of the ith layer) 

divided by (quantity of the 
j t h  layer) 

m Mean 

Superscripts 

' Differentiation 
* Inside the layer 
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